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(ECG) waveforms is presented. This approach implements the combined use of a new machine-
learning algorithm and of specified parameterized functions called Gaussian mesa functions
(GMFs). Individual cardiac cycle waveforms are broken up into GMFs using a generalized
orthogonal forward regression algorithm; each individual GMF is subsequently identified (wave
labeling) and analyzed for feature and morphologic extraction. The GMF associated with the
repolarization waveform of the main vector lead, based on principal components analysis, was
analyzed, and a set of morphologic parameters were derived under 2 experimental settings: first, in
100 digital 12-lead ECG Holter recordings acquired during three 24-hour periods (baseline and after
160 and 320 mg of sotalol) from 38 healthy subjects; second, in drug-free 12-lead resting ECGs
from 100 genotyped long QT syndrome (LQTS) patients (50 each with LQT1 and LQT2). QT-
interval duration was measured using an on-screen method applied to the global representative beats
and reviewed by a senior cardiologist. QTci (individual correction) was used for analysis. All
parameters in the sotalol test showed highly significant differences between the time of peak plasma
concentration (Tmax) and baseline ECGs; however, the dynamic pattern of individual parameters
followed different patterns. The LQTS test confirmed the results of the sotalol test, showing that
GMF-based repolarization parameters were strongly modified as compared with healthy controls. In
particular, T-wave width and descending phase of repolarization were more prolonged in LQT2
compared to LQT1.
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Introduction

Historically, several decomposition models of the electro-
cardiogram (ECG) signal have been proposed. Depending on
the scope of analysis, algorithms based on wavelet
decomposition,1,2 radial basis function modeling,3 neural
networks,4,5 hidden Markov Model,6,7 and many others have
been implemented.8 Although some of these models aim to
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globally describe the ECG signal, others are more targeted to
extract relevant information related to its components, that is,
the individual waveforms that contribute to the P-QRST
complex. The latter approach can be particularly suited
to analyses where a morphologic aspect of an ECG portion
is of particular interest, such as the repolarization segment or
the T wave.

In this article, a method recently described where the
continuously recorded ECG signal is automatically analyzed
using a model based on parameterized functions called
Gaussian mesa functions (GMFs) is reviewed.9 Individual
cardiac cycles identified with standard signal processing
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techniques are first decomposed into individual GMFs (one
or more for each characteristic wave/component of the ECG
signal). The modeled GMFs are subsequently labeled with
an assignment process based on neural network probability
estimators that link each modeled GMF to characteristics
ECG waves (P, Q, R, S, and T).

We extracted the GMFs associated with the T wave and
derived a set of repolarization morphologic indexes from the
GMF parameters from ECG signals acquired in 2 separate
experimental contexts. The first reflected the dynamic
patterns of repolarization after intake of sotalol, a blocker
of the rapidly activating repolarizing potassium current (Ikr)
known to affect repolarization and cause Torsades de paintes
(TdP) in the clinic, and the second illustrated the potential of
the GMF-derived parameters to discriminate between 2
genetic forms of long QT syndrome (LQT1 and LQT2).
Methods

The core of the model is to break up each individual
heartbeat as the summation of M individual GMFs. A single
GMF is an asymmetric function composed of 2 half-
Gaussian functions connected by a horizontal line and
uniquely characterized by 5 parameters (Fig. 1): the time
localization of the GMF (μ), the standard deviation (SD) of
the first (ascending) half-Gaussian (σ1), the SD of the second
(descending) half-Gaussian (σ2), the length of the horizontal
part (σL) and the amplitude (A).

To efficiently fit the parameterized GMFs to the ECG
signal, a new machine-learning algorithm, called general-
ized orthogonal forward regression (GOFR), was
developed.10 The GOFR is based on a 4-step iterative
algorithm that is applied to the signal to be modeled (in our
case a single P-QRST complex). After a library of generic
GMF candidates is defined, the most relevant GMF of the
library (ie, the one showing maximum correlation) is
selected in the first step of GOFR. In the second step, the
selected GMF is tuned to best fit the original signal, using a
nonlinear optimization algorithm based on minimal least
squares cost functions.11 The last 2 steps consist of
orthogonalization of the GMF library and of the original
signal. The GOFR algorithm implementation is represented
in Fig. 2. A set of neural network classifiers are finally
implemented to associate the identified GMFs with the
characteristic waves of the ECG signal.10 The set of GMF
iterations is stopped once the residual signal reaches a
predetermined threshold. When the goal of the model
application is to extract relevant features from the ECG, the
process can be stopped earlier, that is, whenever the
Fig. 1. Definition of the GMF (from referenc
waveform components of interest (eg, the T wave) have
been identified.

Gaussian mesa function modeling method was applied
under 2 experimental contexts. The first experiment (test 1)
was a previously described robust ECG study in 38 healthy
individuals (27 males) in whom 12-lead digital Holter
ECGs (Mortara Instrument, Milwaukee, WI) were recorded
for 24 hours on 3 consecutive days.12 No drug was given on
the first day. On the second and the third day, 160 and
320 mg of sotalol, respectively (Betapace 80-mg tablets,
Berlex Laboratories, Montville, NY) were administered
orally at 08:00 AM. Plasma concentrations of sotalol were
measured at 16 time points during 24 hours after dosing so
that the time of occurrence of the peak plasma concentration
of sotalol (Tmax) could be closely captured. The Holter
ECG data were processed using Antares (AMPS llc, New
York, NY), a software application designed to automatically
identify and extract stable heart rate and minimal noise
ECG segments.13 In this experiment, 10-second 12-lead
ECG extractions were obtained at 73 time points during the
daytime, starting at 8:00 AM and ending at 8:00 PM, with a
10-minute gap between consecutive extractions. The QT-
interval duration was measured on each extracted ECG by
CalECG (AMPS llc, New York, NY), an on-screen caliper
system using a semiautomated approach on global (super-
imposed) representative (median) beats from all 12 leads.14

QTci (individual correction) was computed from each QT
interval using the “global RR interval,” that is, the fully
automated measurement of the RR interval from the 10-
second ECG. For the QTci computation, the power law
(log-log) regression formula was applied to the 73 ECG
extractions from the baseline recording.15

Principal component analysis based on the T wave was
applied to the representative beats; and the T-wave symmetry
index (TWLS), the ratio between the second and the first
eigenvalues, was defined.16 Gaussian mesa function model-
ing was finally applied the first eigenvector (PC1), and the
parameters from the function labeled as the T wave were
retained for morphologic analysis. Specifically, σ1 and σ2

were considered as indicators of the ascending and
descending times of the T wave. Because of the shape of T
wave in PC1, the value of σL was negligible, and for
simplicity it was considered null. The interval μ + 2σ2 was
considered as a surrogate of the QT interval (based on the
assumption that in a Gaussian function, 2 SDs would cover
more than 95% on the total energy under the curve).
Similarly, 2σ1 + 2σ2 can be seen as a surrogate of T-wave
width. A graphic representation of these parameters is given
in Fig. 3. QTci and GMF-derived parameters from peak
e [9], with permission from Elsevier).



Fig. 2. Generalized orthogonal forward regression algorithm for selection, tuning, and orthogonalization of GMF modeling an ECG signal (from reference [9]
with permission from Elsevier).

590 F. Badilini et al. / Journal of Electrocardiology 41 (2008) 588–594
,



Fig. 3. Gaussian mesa function–based repolarization parameters.

Table 1
Comparisons of baseline vs peak sotalol plasma concentrations (160 and
320 mg of sotalol in healthy subjects, test 1)

Baseline 160mg (2 h 49 min
[±45 min])

320mg (2 h 39 min
[±47 min])
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concentration vs time-matched ECGs (separately for the
2 dosing levels inspected) were compared using Kruskal-
Wallis nonparametric test for medians.

In the second experiment (test 2), 100 resting 12-lead
ECGs (MacVu and Mac5000 electrocardiograph, GE
HealthCare, Milwaukee, WI) were selected from patients
with the confirmed genotype of LQTS from the French
LQTS registry.17 This set consisted of 50 ECGs from LQT1
patients (mean age, 29 ± 18; 26 males) and 50 ECGs from
LQT2 patients (mean age, 32 ± 19; 22 males). Baseline
(drug-free) ECGs from the healthy subjects in the sotalol
study were used as the control set. As with first experiment,
GMF modeling was applied to the first eigenvector of the
principal component, and the same indexes were derived
form the GMF labeled as T wave. QT, Bazett-corrected
QTcB, and all morphologic parameters were compared
between groups using Kruskal-Wallis nonparametric test for
medians. Patients in each LQTS group were finally
categorized as symptomatic (patients with known occur-
rence of syncope) vs asymptomatic, and the behavior of
each parameter to characterize a symptomatic phenotype
was investigated.
RR (ms) 892 ± 143 1103 ± 140† 1149 ± 117⁎,†

QTci (ms) 387 ± 17 428 ± 26† 438 ± 28⁎,†

TWLS (%) 0.19 ± 0.09 0.22 ± 0.13 0.22 ± 0.07
μ + 2σ2 (ms) 345 ± 26 423 ± 33† 441 ± 37⁎,†

σ1 (ms) 66 ± 17 99 ± 19† 116 ± 24⁎,†

σ2 (ms) 30 ± 5 41 ± 13† 45 ± 11⁎,†

A (μV) 701 ± 71 640 ± 80† 611 ± 79⁎,†

⁎ P b .05 vs single dose.
† P b .05 vs baseline.
Results

Test 1 (the sotalol experiment)

Results of baseline vs sotalol comparisons at Tmax (time
when peak plasma concentration is reached) are reported in
Table 1. As plasma concentration dynamic is different in
each patient, the Tmax time point varies across subjects:
Tmax was observed 2 hours 49 minutes (±45 minutes) and
2 hours 39 minutes (±47 minutes) after dosing, respectively,
for 160 and 320 mg sotalol administration. Upon exposure to
peak plasma levels of sotalol, all GMF parameters showed
significant changes indicative of a prolonged repolarization
and reduced T-wave energy. Both effects were significantly
more pronounced after 320 vs 160 mg dose of sotalol.
T-wave symmetry index exhibited an increased pattern,
although not reaching statistical significance.

The QT interval and its GMF-based automated
surrogate (μ + 2σ2) were highly correlated (r = 0.96,
P b .001); to assess their degree of agreement, Bland-
Altman analysis from the pooled sample of 6236 ECGs
from all time points was performed (Fig. 4). The difference



Fig. 4. Bland-Altman plot of QT interval vs GMF-related repolarization duration from the overall data population (6236 ECGs from test 1).
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between QT and μ + 2σ2 exhibited a significant trend
(intercept, 73 milliseconds; slope, −0.1266; P b .001), thus
indicating a large positive bias (QT N μ + 2σ2) at fast heart
rates and a closer agreement at slower heart rates.

Fig. 5 presents an example of time-course patterns in a
typical subject receiving a 320-mg dose of sotalol: at 1 hour
after dosing, the T wave is still very close to the baseline
shape, whereas at 1.5 hours after dosing, the repolarization
prolongation becomes apparent, and it is mainly related to a
change of the ascending phase (σ1). At maximum concentra-
tion (plasma Tmax of sotalol, between 2 and 2.5 hours after
dosing), the overall duration of repolarization has approxi-
Fig. 5. Overlap of T wave after 320 mg sotalol adm
mately reached its maximum value, but the morphology
changes are still progressing. The maximum morphologic
changes in the example depicted in Fig. 5 were seen 7 hours
after dosing, and even at 12 hours, the morphology of the
T wave has not yet returned to what it was at peak
concentration. In Fig. 6, the trends over time of the differences
of both QT and μ + 2σ2, together with the averaged
distribution of sotalol plasma concentration, are shown.

Test 2 (the LQTS experiment)

Comparisons between LQT1 and LQT2 with respect to
controls are reported in Table 2. All parameters reflecting
inistration in a representative healthy subject.



Fig. 6. Trend display of QT interval vs GMF-related repolarization duration differences with respect to time-matched baseline ECGs.
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repolarization duration (QT, μ, μ + 2σ2) were significantly
prolonged in both LQT1 and LQT2 patients. However,
the morphologic parameters showed less consistency
between LQT types; for example, the descending phase
of the T wave (σ2), the T wave amplitude, and the GMF-
related T-wave duration surrogate 2σ1 + 2σ2 were clearly
altered only in the LQT2 group. The TWLS in the LQT2
group was significantly increased with respect to both the
control and the LQT1 groups. Although a tendency toward
discrimination between the symptomatic and asymptomatic
patients was observed for most parameters in both LQT
types, statistical significance was only reached for the
difference in the GMF-based T-wave duration 2σ1 + 2σ2 in
the LQT2 group (Fig. 7).
Discussion

Gaussian mesa function modeling is a novel method
with a promising potential for the analysis of abnormal
cardiac repolarization. Being fully automated, GMF
modeling is a powerful tool for efficient beat detection
and classification of ECG waveforms from both resting
ECGs and continuous ECG recordings.9 This study shows
the applications of this approach in the assessment of
drug-induced morphologic changes of cardiac repolariza-
tion (test 1) and for the identification of new discriminat-
Table 2
Comparisons between standard and GMF-related repolarization parameters
in LQT1 and LQT2 patients vs healthy controls (test 2)

Control
(n = 38)

LQT1
(n = 50)

LQT2
(n = 50)

RR (ms) 892 ± 143 941 ± 222 985 ± 192⁎

QT (ms) 372 ± 25 433 ± 73⁎ 445 ± 72⁎

QTcB (ms) 395 ± 18 449 ± 42⁎ 450 ± 50⁎

TWLS (%) 0.19 ± 0.09 0.22 ± 0.11 0.32 ± 0.20⁎,†

μ + 2σ2 (ms) 345 ± 26 401 ± 67⁎ 412 ± 64⁎

μ (ms) 286 ± 23 343 ± 60⁎ 343 ± 65⁎

σ1 (ms) 66 ± 17 61 ± 12 69 ± 21
σ2 (ms) 30 ± 5 29 ± 7 36 ± 14⁎,†

2σ1 + 2σ2 (ms) 182 ± 29 180 ± 32 210 ± 55⁎,†

A (μV) 1043 ± 451 974 ± 501 749 ± 384⁎,†

The ECGs from drug-free baseline in healthy subjects in test 1 were used as
controls.

⁎ P b .05 vs control.
† P b .05 vs LQT1.

Fig. 7. GMF-based T-wave duration in symptomatic and asymptomatic
LQT2 patients.
ing indexes between different forms of the inherited
LQTS (test 2).

We have observed a strong correlation (r = 0.96)
between the semiautomated measurement of the QT interval
duration and the fully automated determination of the GMF-
based repolarization duration index μ + 2σ2. Despite this
correlation, Bland-Altman analysis evidenced a nonstable
bias, whereby μ + 2σ2 is shorter than QT, particularly at
faster heart rates (Fig. 4). Gaussian mesa function–based
repolarization duration may address different features of
cardiac repolarization, and further investigation will tell
whether this biomarker also carry better diagnostic and
prognostic values. Nevertheless, it is important that our
novel fully automated approach produced an index highly
correlated with the QT interval duration measured by the
standard manually supervised method routinely used by
central ECG laboratories.

Results from the sotalol experiment evidenced a strong
dose-related prolongation of repolarization (Table 1); this
finding confirms what was previously reported using
standard QT and novel T-wave area-based parameters.18,19

More interestingly, different dynamics were observed with
the sotalol-induced GMF-based morphologic indexes.
Specifically, the ascending phase duration σ1 was affected
very early after dosing, whereas the changes in the
descending phase duration σ2 were more closely associated
with the morphologic changes and correlated with the
amplitude decrease observed later in time (Fig. 5). These
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findings indicate that the prolongation of the QT interval
occurs early in time (even before peak concentration of the
drug is reached), whereas more critical sotalol-induced
changes in ECG waveform morphology only occur at
later stages.

Our findings on the LQTS experiment showed a marked
prolongation of all repolarization duration indexes in both
the genotyped LQT1 and LQT2 patient groups (Table 2).
This result confirms previous findings20; however, morpho-
logic parameters seem to indicate a stronger differentiation
between the 2 genetic variants of LQTS than the standard QT
duration, thus offering enhanced diagnostic potential of
GMF modeling. For example, none of the GMF parameters
were affected in LQT1 patients, implying that in this
population, the T-wave duration is shifted temporally
without any critical change in its width, amplitude, slope,
or other morphologic aspects. Conversely, in LQT2 patients,
all parameters except σ1 were altered compared to controls
and (for TWLS, σ2, 2σ1 + 2σ2, and A) vs the LQT1 group.
This implies that in LQT2 the Twave is shifted temporally, it
is wider, and has a reduced amplitude mainly because of
changes in the descending phase of the T wave (σ2). These
findings are in agreement with previously published data16,20

and particularly with the pioneer work of Moss et al who first
described patterns of different forms of LQTS in 1995.21

Comparisons between symptomatic and asymptomatic
patients with LQTS enhanced a tendency for more
pronounced alterations in the symptomatic group, although
statistical significance was only reached for the GMF
surrogate of T-wave duration 2σ1 + 2σ2 in LQT2 patients
(Fig. 7). The interpretation of this result is limited by the
relatively small numbers of symptomatic patients with LQT2
(19 vs 31 asymptomatic). However, the trend toward a
separation in this morphologic T-wave parameter between
the 2 clinical phenotypes of LQT2 points toward the possible
superior discrimination power of GMF-based parameters
over QT interval duration and warrants further study in larger
cohorts of patients with LQTS.

Conclusions

We described a new method for the automatic analysis of
ECG waveforms based on GMF modeling suited for both
classification and parametric feature extraction. The results
presented suggest that this method could be useful to
characterize repolarization-related abnormalities in both the
clinical health care and drug development environments.

Limitations

In this preliminary study, analysis is based on the first
principal component of the repolarization phase. Although
most of the energy is confined in the first component, it has
been shown that morphologic changes can also be visible in
the second and third components and further analysis will be
needed to determine the effectiveness of GMF modelization
extended to other components.

The discriminative power of the new biomarkers
presented in this article, particularly with respect to different
variants of LQTS, will need to be further explored with more
powerful statistical tools once the sample size of the data
population will have reached suitable size.
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